

BEST-AVAILABLE-TECHNIQUES (BAT) PROJECT OF THE OECD

11th TFTEI Annual Meeting 8 October 2025

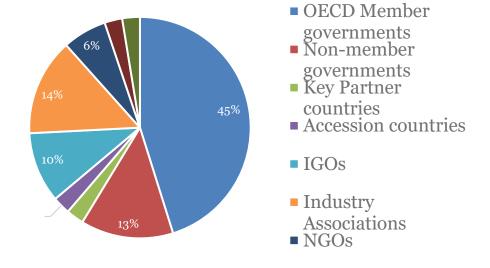
Berrak ERYASA

Policy Analyst – BAT

Environment, Health and Safety (EHS) division

Environment Directorate (ENV)

Objectives of the BAT project


- Exchange best practices across countries that already have a BAT-based permitting system
- **Provide guidance** to countries that seek to adopt a BAT-based approach for the first time
- Achieve **progress towards the SDGs**, notably Target 12.4 on the environmentally sound management of chemicals

The OECD Expert Group on BAT

- Established in 2015, increased tenfold in size since
- 160 members from 40+ countries and organisations

- One <u>face-to-face</u> meeting and one interim virtual meeting per year, plus frequent exchanges by email/phone
 - 10th meeting of the Expert Group on BAT in 2025

13-14 November in Seoul, Korea

Deliverables of the OECD's BAT project (2016-2027)

Phase I (2016-2018)

Act.1- Policies on BAT Across the World (2017)

Act.2 -Approaches to Establishing BAT Around the World (2018)

Act.3 - Measuring the Effectiveness of BAT Policies (2019)

Phase II (2019-2021)

Act.4 - BAT guidance document (2020)

Act. 5 - Study on value chain aspects of determining BAT (2021)

Act. 6 - Cross-country comparison of selected BREFs (Part I)

Phase III (2022-2024)

Act. 7 - Cross-country comparison of selected BREFs (Part II)

Act. 8 - Capacity building workshops

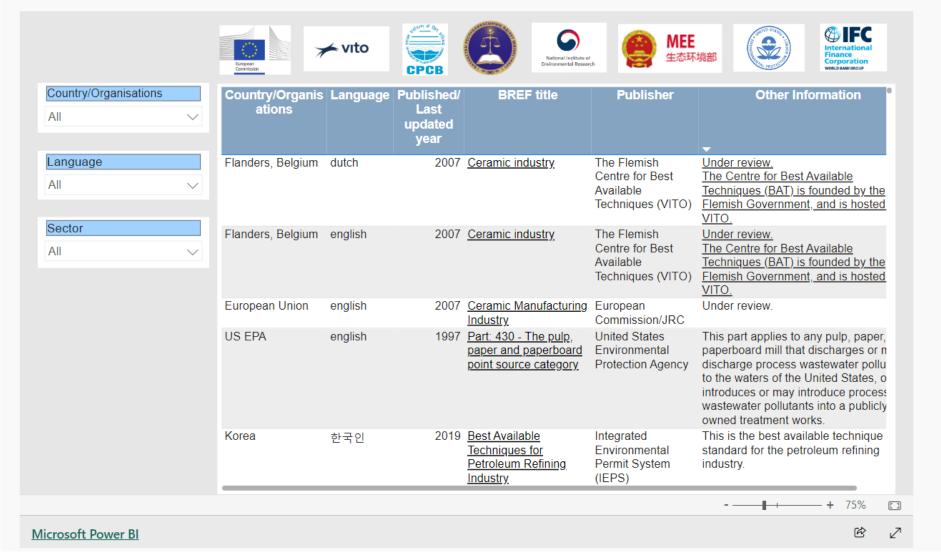
Act.9 - Identifying innovation and ETs for potential BAT determination

Activity 8 - <u>Lessons Learnt</u>

Activity 9 – <u>Innovation and ETs</u>

Phase IV (2025 – 2027)

Act.10 -Role of BAT in Hydrogen production


Act.11 –Recovery of Secondary Raw Materials (SRM) for Resource Optimisation

Act. 12 – Capacity building workshops

Online Resource – <u>List of BREFs webpage</u>

Industrial Pollution Control Webinar Series

Activity 7: Cross Country Analysis of selected BREFs for Iron-Steel, Paper-Pulp and Waste incineration sectors (2024)

Activity 6: Cross Country Analysis of selected BREFs for Thermal Power plants, Cement and Textiles sectors (2022)

Webinar series on BAT

13 June TPP (Act.6) & IS (Act.7)

TXT
(Act.6)
& PP
(Act.7)

Sep.

CMT
(Act.6)
& WI
(Act.7)

ACTIVITY 7: CROSS COUNTRY ANALYSIS OF SELECTED BREFS FOR IRON-STEEL, PAPER-PULP AND WASTE INCINERATION SECTORS (2024)

- Governments face a dual challenge:
 - Tightening industrial regulations.
 - Achieving environmental protection & SDGs.

- Analyse industrial pollution prevention and control techniques across countries
 - ➤BAT and BAT-AELs for three sectors and their key pollutants

Activity 7 – Cross-country analyses of selected BREFs

• Six BREFs/BREF-like

Iron & Steel

Paper & Pulp

Waste Incineration

Sectors and Pollutants

Coverage of substances in each Paper and Pulp BREF

Substance	BREF
Air emission	
Nitrogen Oxides (NO _x)	EU, World Bank
Sulphur Oxides (SO _x)	EU*, Korea, World Bank*
Dust/PM	EU, Korea, US EPA, India, World Bank
Carbon monoxide (CO)	-
Ammonia (NH₃), incl. slip	EU
Total reduced sulphur (TRS)	EU*, US EPA, India (only H2S) World Bank
Hazardous Air Pollutant (HAPs)	US EPA
Dioxins and furans	China
Water release	
Total suspended solids (TSS)	China, EU, Korea, US EPA
Chemical oxygen demand (COD)	China, EU, Korea, US EPA
Biochemical oxygen demand (BOD)	China, EU, US EPA, India
Adsorbable organic halides (AOX)	China, EU, US EPA, India
Heavy Metals (zinc, nickel, copper)	Korea, US EPA
Total Nitrogen (TN)	EU, Korea
Total Phosphorus (tot-P)	China, EU
Ammonia	China
Wastewater treatment (wastewater sent to treatment)	China, EU
Water Consumption	China, EU, Korea
Hydrogen Chloride (HCI)	Korea

KEIs for cross-country analysis

Iron and Steel

Sinter Plants

- Dust,
- NOx,
- SOx,
- Hg,
- dioxins

Blast Furnace

• Dust

• Heavy metals

Heavy

metals

Cyanide

Electric Arc Furnaces (EAF)

- Dust,
- Hg,
- dioxins

Paper and pulp production

Kraft Pulping (Recovery boilers)

- Dust,
- NOx,
- TRS

- TSS
- COD/TOC
- AOX

Paper manufactured from recycled paper

- TSS
- COD
- AOX
- Tot-N
- Tot-P

Water consumption efficiency

Waste incineration

Municipal Solid Waste Incineration

- Dust,
- NOx with NH3 slip,
- Heavy metals (Hg, Cd, tot-metals),
- Dioxins and Furans (PCDD/F)
- Acid gases (HCI, HF, SO2)

Key pollutants & BAT:

- Air: NOx, SOx, PM, mercury, dioxins.
- Water: Cyanides, lead, zinc.

Common BAT:

- End-of-pipe: SCR, ESP, fabric filters.
- Process-integrated: Low-NOx burners, better raw materials.
 - Example: EU vs. China (GATPPC) BREF shows variation in PM limits due to measurement standards & technical-economic conditions

Paper and Pulp sector

Key pollutants & BAT:

- Air: TRS, PM, NOx from recovery boilers.
- Water: TSS, COD, AOX, nutrients (N, P).
- Efficiency measure: Water use per tonne of product.

Common BAT examples:

- End-of-pipe: Activated sludge, coagulation.
- Process-integrated: Water recycling, process optimisation.

Municipal Solid Waste Incineration

Key pollutants & BAT:

- Air: PM, NOx, NH3, heavy metals, dioxins, HF, HCl.

Common BAT examples:

- SCR for NOx, activated carbon adsorption for mercury/dioxins.
- Improved combustion control to limit pollutant formation

Common BAT Approaches Across Sectors & Countries

Air emissions:

- SCR (Selective Catalytic Reduction) NOx.
- ESP (Electrostatic Precipitators), fabric filters PM.
- Activated carbon adsorption Hg, dioxins.

Water releases:

- Activated sludge, coagulation/precipitation COD, TSS.
- Water Reuse and Closed-Loop Cooling Efficiency.

BAT-AE(P)Ls - Technical Stringency Variations

BAT-Associated Emission (Performance) Levels

• NOx Emissions (mg/Nm³):

- EU: 50-150 (SCR) for large boilers
- US-EPA: ~120−200 (varies by state)
- China: 100–200 (new plants tighter)
- India: 300–600 (older plants higher)

• PM Emissions (mg/Nm³):

- EU: 2-10 (ESP/fabric filter)
- Korea: 5-20
- India/China (older plants): 30-50

End-of-pipe tech same, but performance ranges differ due to:

- Reference oxygen % variations.
- Averaging period differences (hourly vs daily).
- Plant-specific feasibility.

- Common BAT techniques are widely recognised, but BAT-AEL values vary significantly.
- Measurement and reference conditions explain part of the variation.
- Sector-specific pollutant profiles influence BAT choices (e.g., dioxins only in waste & steel).
- Combined approach (end-of-pipe + process-integrated) yields best results

Why BAT Levels Differ Between Countries?

- Legal status (binding vs. guidance).
- Economic & technical capacity.
- Environmental priorities.
- Monitoring & measurement differences (reference conditions, oxygen levels, averaging periods).

Cross-country Analysis of BAT frameworks

Challenges

- Lack of harmonised BAT-AEL measurement conditions
- Legal and institutional variability across countries
- Limited comparability due to inconsistent documentation

Opportunities

- Standardising monitoring and assessment methods
- Expanding international collaboration and data sharing
- Aligning environmental performance benchmarks globally

I&S P&P WI

TPP CMT TXT

Any questions or follow-up:

Berrak ERYASA: <u>berrak.eryasa@oecd.org</u>

https://www.oecd.org/en/topics/sub-issues/monitoring-and-preventing-industrial-pollution.html